Knowledge Discovery by Relation Approximation: A Rough Set Approach
نویسنده
چکیده
In recent years, rough set theory [1] has attracted attention of many researchers and practitioners all over the world, who have contributed essentially to its development and applications. With many practical and interesting applications rough set approach seems to be of fundamental importance to AI and cognitive sciences, especially in the areas of machine learning, knowledge acquisition, decision analysis, knowledge discovery from databases, expert systems, inductive reasoning and pattern recognition [2]. The common issue of the above mentioned domains is the concept approximation problem which is based on searching for description – in a predefined language L – of concepts definable in other language L∗. Not every concept in L∗ can be exactly described in L, therefore the problem is to find an approximate description rather than exact description of unknown concepts, and the approximation is required to be as exact as possible. Usually, concepts are interpretable as subsets of objects from a universe, and the accuracy of approximation is measured by the closeness of the corresponding subsets. Rough set theory has been introduced as a tool for concept approximation from incomplete information or imperfect data. The essential idea of rough set approach is to search for two descriptive sets called the lower approximation containing those objects that certainly belong to the concept and the ”upper approximation” containing those objects that possibly belong to the concept. Most concept approximation methods realize the inductive learning approach, which assumes that a partial information about the concept is given by a finite sample, so called the training sample or training set, consisting of positive and negative cases (i.e., objects belonging or not belonging to the concept). The information from training tables makes the search for patterns describing the given concept possible. In practice, we assume that all objects from the universe U are perceived by means of information vectors being vectors of attribute values (information signature). In this case, the language L consists of boolean formulas defined over conditional (effectively measurable) attributes. The task of concept approximation is possible when some information about the concept is available. Except the partial information above the membership function given by training data set, the domain knowledge is also very useful
منابع مشابه
Topological structure on generalized approximation space related to n-arry relation
Classical structure of rough set theory was first formulated by Z. Pawlak in [6]. The foundation of its object classification is an equivalence binary relation and equivalence classes. The upper and lower approximation operations are two core notions in rough set theory. They can also be seenas a closure operator and an interior operator of the topology induced by an equivalence relation on a u...
متن کاملApplication of Rough Set Theory in Data Mining for Decision Support Systems (DSSs)
Decision support systems (DSSs) are prevalent information systems for decision making in many competitive business environments. In a DSS, decision making process is intimately related to some factors which determine the quality of information systems and their related products. Traditional approaches to data analysis usually cannot be implemented in sophisticated Companies, where managers ne...
متن کاملVPRS-Based Knowledge Discovery Approach in Incomplete Information System
Through changing the equivalence relation in the incomplete information system, a new variable precision rough set model and an approach for knowledge reduction are proposed. To overcome no monotonic property of the lower approximation, a cumulative variable precision rough set model is explored, and the basic properties of cumulative lower and upper approximation operators are investigated. Th...
متن کاملT-Rough Sets Based on the Lattices
The aim of this paper is to introduce and study set- valued homomorphism on lattices and T-rough lattice with respect to a sublattice. This paper deals with T-rough set approach on the lattice theory. The result of this study contributes to, T-rough fuzzy set and approximation theory and proved in several papers. Keywords: approximation space; lattice; prime ideal; rough ideal; T-rough set; set...
متن کاملS-APPROXIMATION SPACES: A FUZZY APPROACH
In this paper, we study the concept of S-approximation spaces in fuzzy set theory and investigate its properties. Along introducing three pairs of lower and upper approximation operators for fuzzy S-approximation spaces, their properties under different assumptions, e.g. monotonicity and weak complement compatibility are studied. By employing two thresholds for minimum acceptance accuracy and m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006